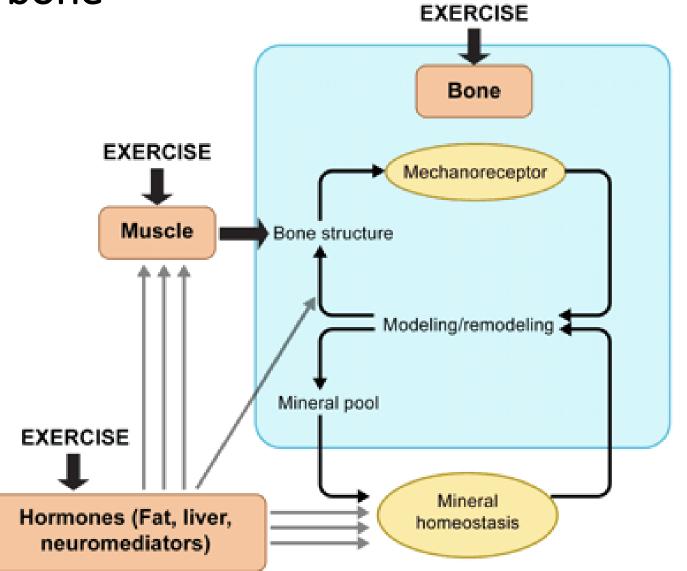
Physical activity and musculoskeletal health

across the life course

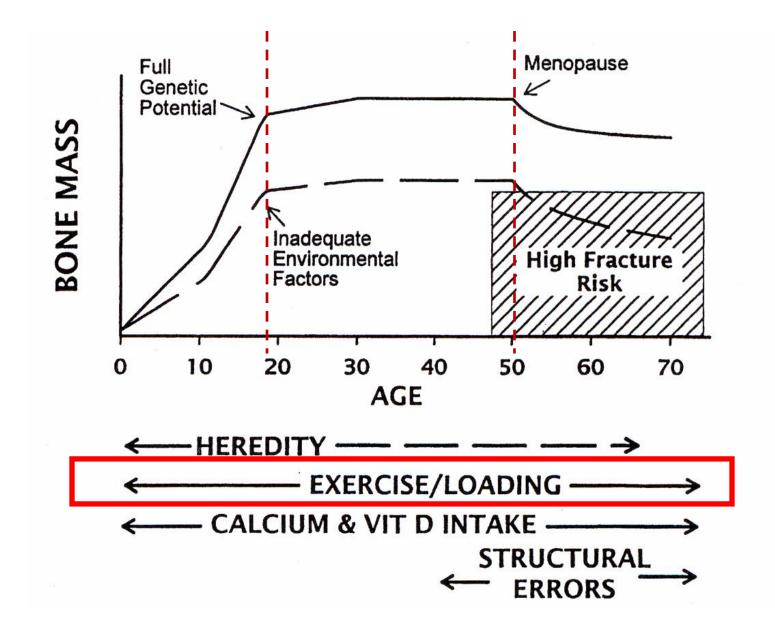
in Africa

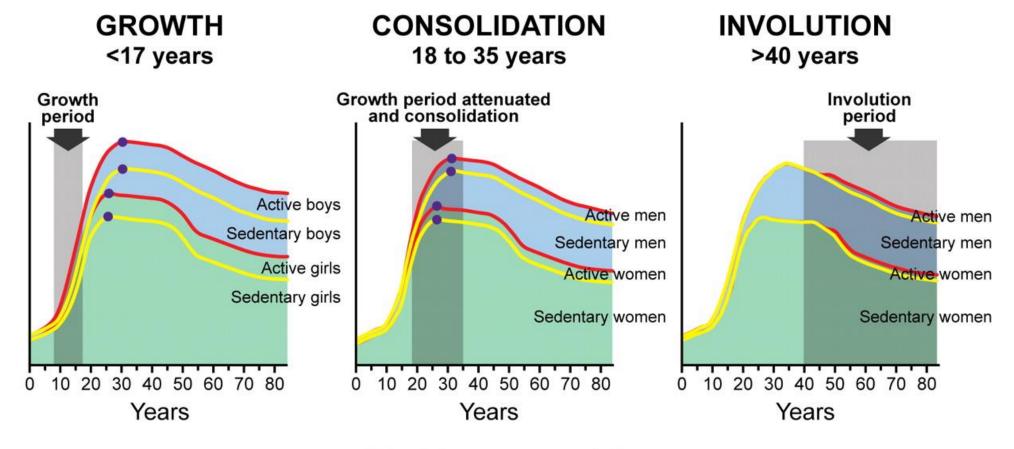
Lisa Micklesfield, PhD

MRC Developmental Pathways for Health Research Unit University of the Witwatersrand, Johannesburg, South Africa

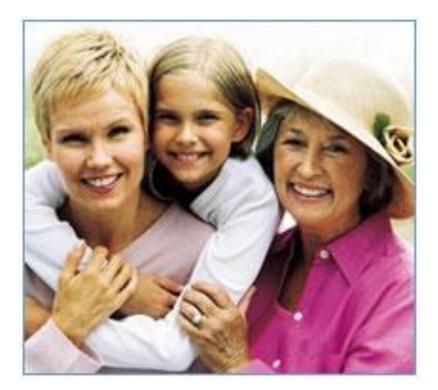

Sub-Saharan African MuSculOskeletal Network (SAMSON)

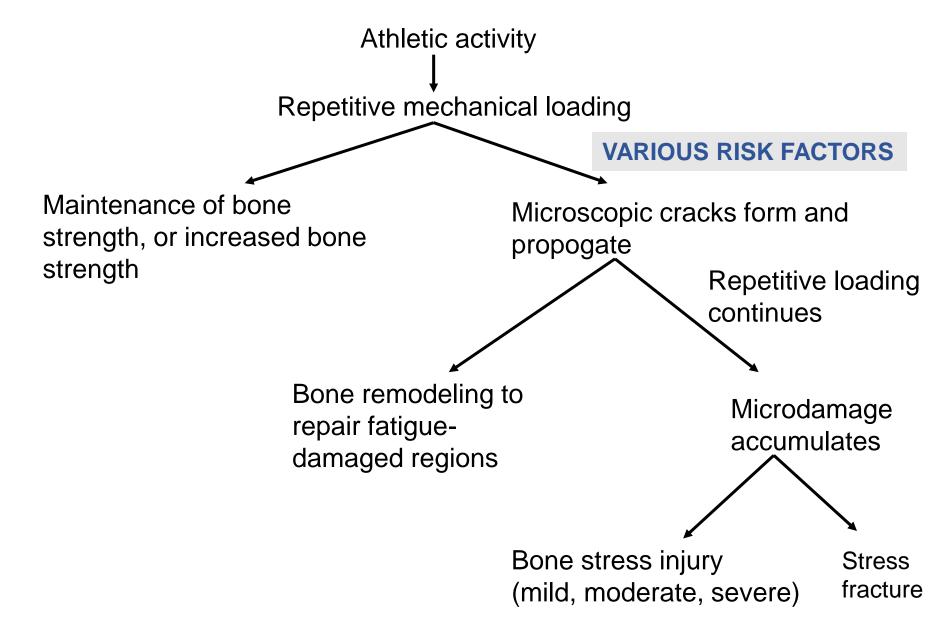
Musculoskeletal Research Training Workshop, Harare, Zimbabwe


Monday 19 - Thursday 22 March 2018

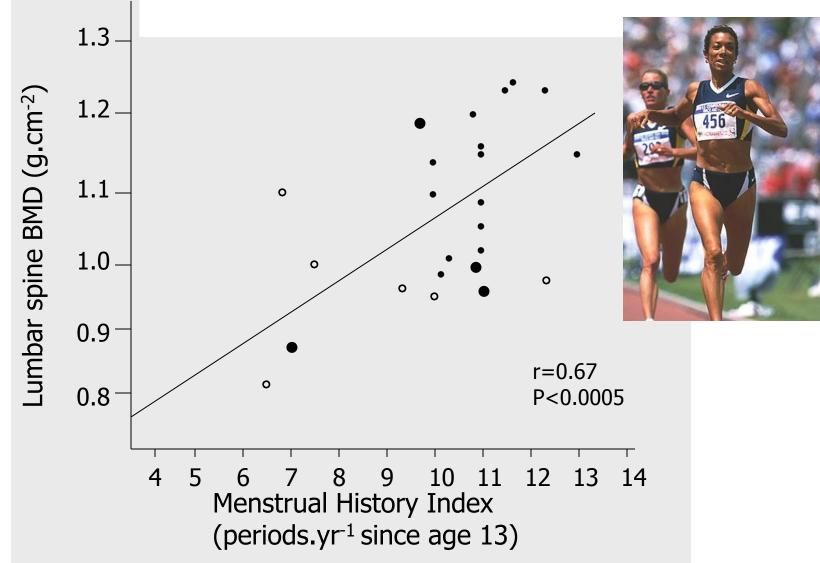

Exercise and bone

Bone mass life line(© Robert Heaney, 1999)


Exercise and bone


Peak bone mass acquisition

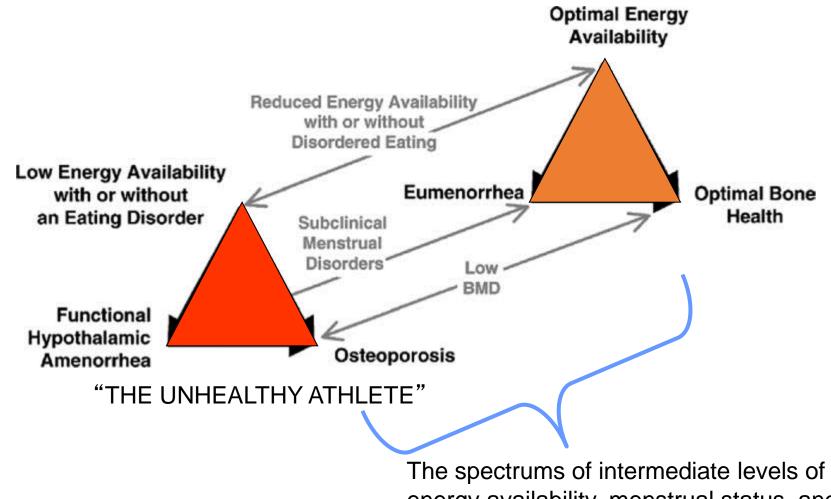
The role of exercise through the various life-stages..


- 1. Increase peak bone mass.
- 2. Minimise age-related bone loss.
- 3. Prevent falls and fractures.

BONE STRESS INJURY

When is physical activity not beneficial to BMD?

Micklesfield et al., 1995


BONE TURNOVER

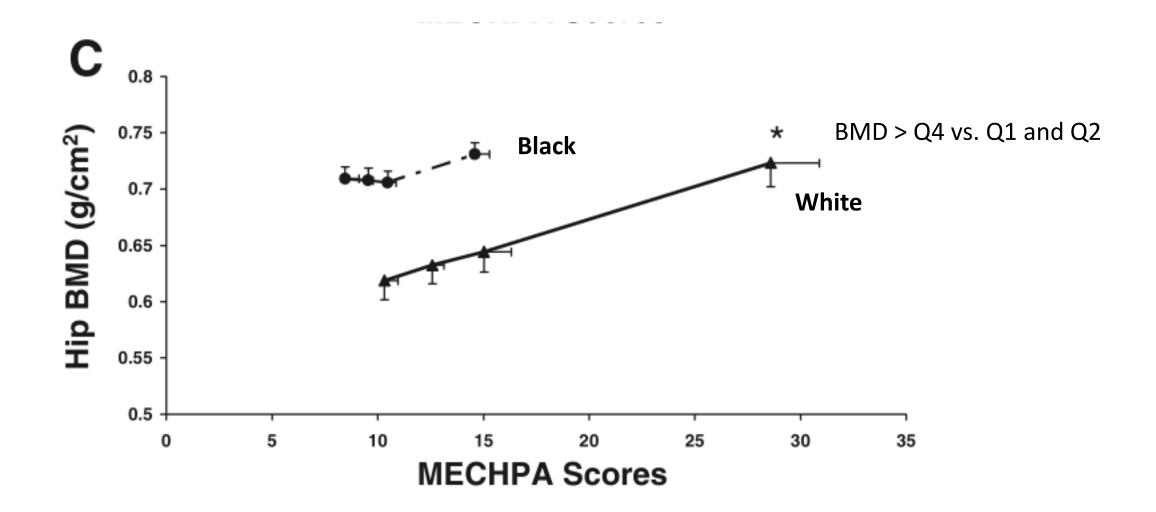
Decreased Exercisebone associated bone formation loss is due to an energy deficit ow in anorexia rather than low estrogen UCHCICIC

ecreases in underhutrition

THE FEMALE ATHLETE TRIAD (2007)

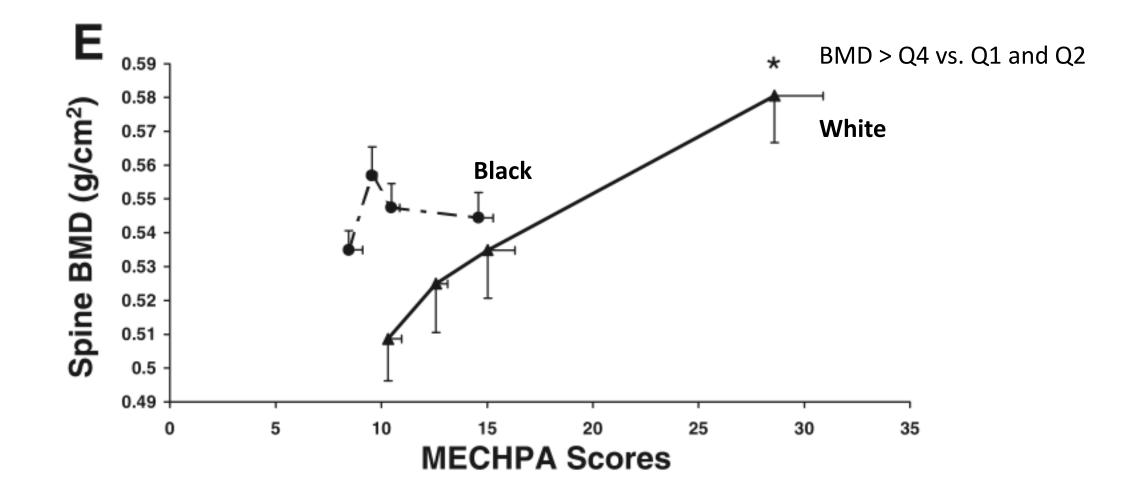
"THE HEALTHY ATHLETE"

energy availability, menstrual status, and BMD where health status may be distributed


SOCIAL INEQUALITIES IN PHYSICAL ACTIVITY PARTICIPATION AND PATTERNS IN SOUTH AFRICA

venty me	Q1 (n=115)	Q2 (n=78)	Q3 (n=78)	Q4 (n=115)
Race (% white)	0	0	0	68.7
Maternal education (% completed high school)	16.5	32.1	43.7	81.7
Support (% mothers living with partner and married)	40	41	52.1	70.4
Income (% with no cash income)	60	43.6	35.2	27.8

Physical activity characteristics of 9 year old SA children


	White Male (n=44)	Black Male (n=158)	White Female (n=38)	Black Female (n=146)
PE (yes)	41/44 (93%)*	43/158 (27%)	34/38 (90%)***	50/146 (34%)
Sedentary activity including sleep (hrs/day)	10.48 (0.79)	10.63 (0.33)	8.61 (0.54)	9.03 (0.34)
TV watching (hrs/wk)	17.28 (1.67)	26.54 (0.99)**	14.87 (1.75)	23.52 (1.02)****
Passive commuting (hrs/day)	0.33 (0.03)	0.4 (0.06)	0.37 (0.49)	0.47 (0.06)
Active Commuting (hrs/day)	0.03 (0.01)	0.35 (0.03)**	0.04 (0.02)	0.27 (0.03)****
Sleep (hrs/night)	10.02 (0.09)*	9.24 (0.78)	10.11 (0.14)***	9.38 (0.13)
METPA score	27.74 (5.07)*	10.65 (0.63)	14.7 (2.07)	8.39 (0.86)
MECHPA score	5.7 (1.05)*****	2.96 (0.19)	2.97 (0.56)***	2.26 (0.35)

Physical activity and bone mass in SA children

McVeigh et al., JAP 2004

Physical activity and bone mass in SA children

McVeigh et al., JAP 2004

<u>Metabolic physical activity scores (METS/day) at 15 years in</u> <u>children with and without fractures</u>

	Metabolic physical activity scores at 15 years (METS/day)				
	Children without fractures		Children with fractures		
	n	n Mean (SD) n M		Mean (SD)	
White males	24	138 (64)	22	196 * (83)	
White females	38	183 (106)	18	164 (65)	
Black males	140	153 (53)	32	158 (66)	
Black females	145	139 (46)	18	135 (33)	

Collaboration with colleagues at the Department of Physiology (Exercise Lab), University of the Witwatersrand

J Musculoskelet Neuronal Interact 2014; 14(3):276-285

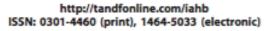
Original Article

Osteogenic effects of a physical activity intervention in South African black children

R.M. Meiring¹, L.K. Micklesfield², I. Avidon¹, J.A. McVeigh¹

n=22 (EX n=12, CON n=10); 9.7 (1.1) years

20 week weight bearing exercise programme


DXA and tibial pQCT (4% and 38% sites)

This study documents for the first time the beneficial

response of trabecular and cortical bone of black children

to a weight bearing exercise intervention.

Results: significant group x time interaction in hip BMC, ToD and TrbD (4% site) and CoD (38% site)

SSHB

RESEARCH PAPER

Annals of

The effect of loading and ethnicity on annual changes in cortical bone of the radius and tibia in pre-pubertal children

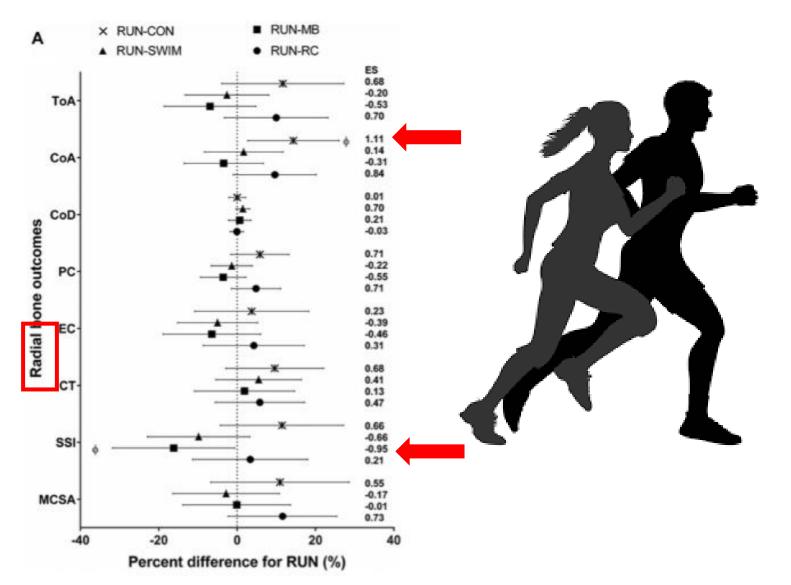
Rebecca M. Meiring¹, Lisa K. Micklesfield², and Joanne A. McVeigh¹

Aim: To determine whether the annual

relative change in bone size and strength

differed between high and low bone

Loaders, and also between black and


white pre-pubertal children.

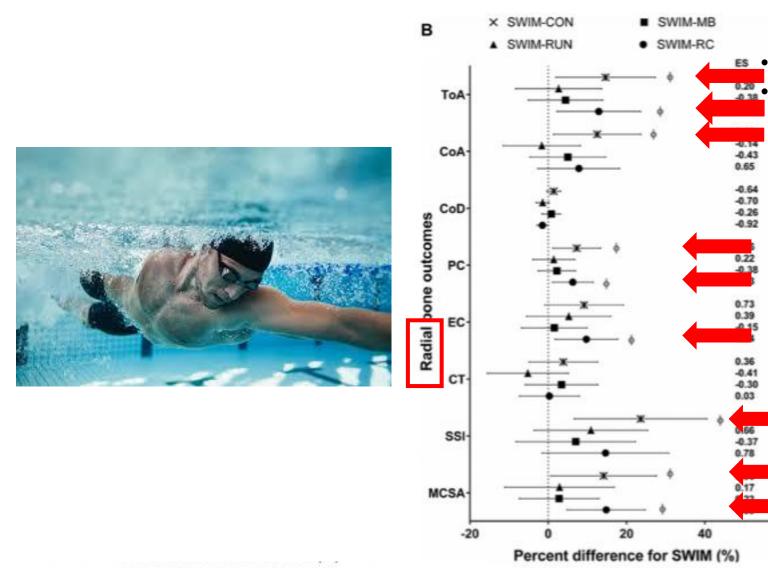
- pQCT 65% radius and tibia; 41 black and white children (15 boys, 26 girls); 8–11 years of age, at baseline and 1 year later.
- Children were categorised into either a **high or low bone loading group** from a peak bone strain score obtained from a bone-specific physical activity questionnaire.
- There was **no difference in annual relative change** in radial or tibia bone size and strength between the low and high bone loaders.
- <u>Black children had a greater annual relative change in CoD and SSI compared to the white children.</u>

Routledge

ORIGINAL ARTICLE

Radial and tibial bone indices in athletes participating in different endurance sports: a pQCT study †

To establish whether different sports, which impose different magnitude and types of bone loading on particular appendicular sites, will result in sport-specific bone adaptations


> pQCT radial and tibial diaphyseal measures (i) non-weight-bearing and non-impact sports:

- swimmers (SWIM, n = 13)
- road cyclists (RC, n = 10)
- mountain bikers (MB, n = 10)
- runners (RUN, n = 9)
- sedentary controls (CON, n = 10).

Oosthuyse et al., 2016

ORIGINAL ARTICLE

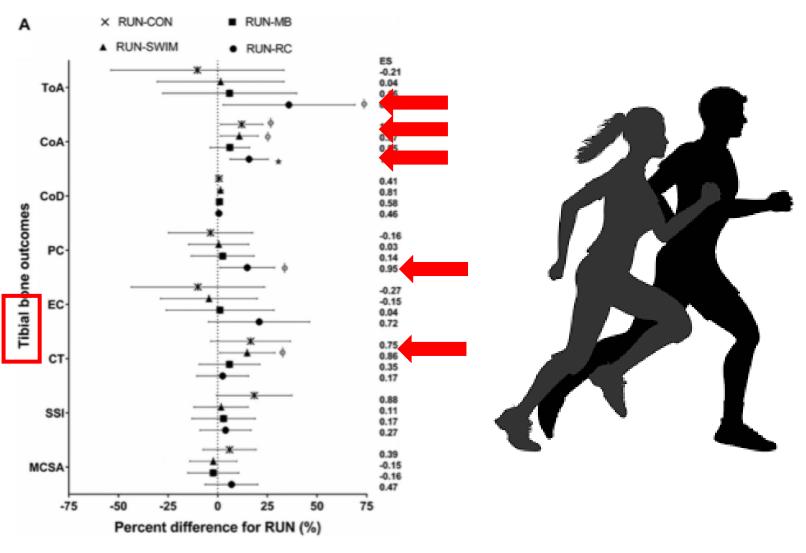
Radial and tibial bone indices in athletes participating in different endurance sports: a pQCT study^{\dagger}

Routledge

To establish whether different sports, which impose different magnitude and types of bone loading on particular appendicular sites, will result in sport-specific bone adaptations

> pQCT radial and tibial diaphyseal measures (i) non-weight-bearing and non-impact sports:

- swimmers (SWIM, n = 13)
- road cyclists (RC, n = 10)
- mountain bikers (MB, n = 10)
- runners (RUN, n = 9)
- sedentary controls (CON, n = 10).

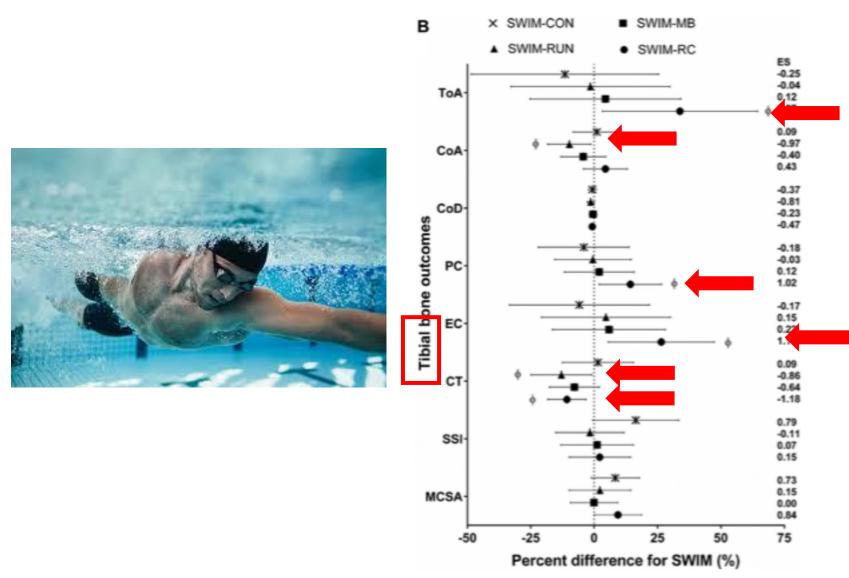

In swimmers, the bone structure and strength of the primary exercised limbs, the arms, is greater than controls and road cyclists.

Oosthuyse et al., 2016

Routledge

ORIGINAL ARTICLE

Radial and tibial bone indices in athletes participating in different endurance sports: a pQCT study^{\dagger}



- pQCT radial and tibial diaphyseal measures
- (i) non-weight-bearing and nonimpact sports:
 - swimmers (SWIM, n = 13)
 - road cyclists (RC, n = 10)
 - mountain bikers (MB, n = 10)
 - runners (RUN, n = 9)
 - sedentary controls (CON, n = 10).

Runners displayed greatest bone size at the tibia compared to controls, road cyclists and swimmers

ORIGINAL ARTICLE

Radial and tibial bone indices in athletes participating in different endurance sports: a pOCT study^{\dagger}

- pQCT radial and tibial diaphyseal measures
- (i) non-weight-bearing and nonimpact sports:
 - swimmers (SWIM, n = 13)
 - road cyclists (RC, n = 10)
 - mountain bikers (MB, n = 10)
 - runners (RUN, n = 9)
 - sedentary controls (CON, n = 10).

Oosthuyse et al., 2016

European Journal of Sport Science, 2015 Vol. 15, No. 4, 332-340, http://dx.doi.org/10.1080/17461391.2014.933881

ORIGINAL ARTICLE

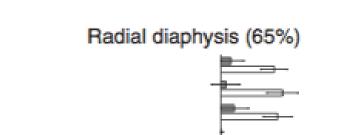
Radial bone size and strength indices in male road cyclists, mountain bikers and controls

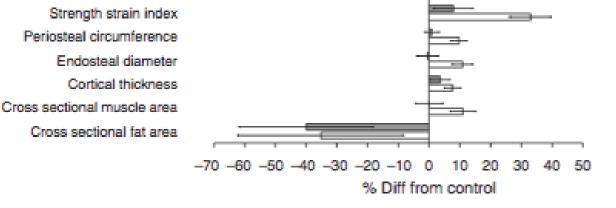
Routledge

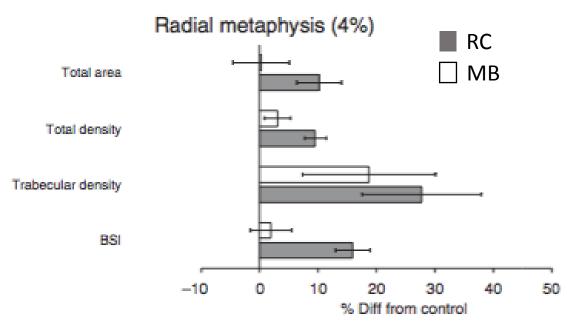
Taylor & Francis Group

B

BMC


Total area Cortical area


Cortical density


JOANNE A. MCVEIGH¹, REBECCA MEIRING¹, ALESSANDRA CIMATO¹, LISA K. MICKLESFIELD², & TANJA OOSTHUYSE¹

```
30 male cyclists (18–34 years);
MB (n = 10), RC (n = 10)
and non-athletes controls (CON, n =
10)
4% and 65% radius - pQCT
```

Bone loading, muscle size and strength of MB are superior to RC.

Calcif Tissue Int (2003) 73:463-469 DOI: 10.1007/s00223-002-2129-8

Bone Mineral Density and Lifetime Physical Activity in South African Women

L. Micklesfield,¹ L. Rosenberg,² D. Cooper,³ M. Hoffman,³ A. Kalla,⁴ I. Stander,⁵ E. Lambert¹

Multivariate analysis for LS BMD

Aim: to evaluate the relationship between **lifetime physical activity** patterns and BMD in middle and older-age women from the Western Cape of South Africa.

Variable	b	β	P level
Age (yrs) Total energy expenditure* (Met hrs/week) Weight (kg)	-0.205 0.215 0.419	-0.003 0.0005 0.004	0.013 0.009 0.000
With household energy expenditure* in place of total energy expenditure ² Age (yrs) Household energy expenditure* (Met hrs/week) Weight (kg)	-0.190 0.255 0.418	-0.003 0.0012 0.004	0.0183 0.0015 0.000

¹ R = 0.480, adjusted R² = 0.211, SEE = 0.125, P < 0.0001, β, parameter estimate; b, partial coefficient ² R = 0.500, adjusted R² = 0.231, SEE = 0.124, P < 0.0001, β, parameter estimate; b, partial coefficient * Between 14 and 21 years of age

Micklesfield et al., CTI 2003

ORIGINAL ARTICLE

Site-specific differences in bone mineral density in black and white premenopausal South African women

S. Chantler • K. Dickie • J. H. Goedecke • N. S. Levitt • E. V. Lambert • J. Evans • Y. Joffe • L. K. Micklesfield

_			
	Black women (n =240)	White women $(n = 187)$	P value
Sociodemographics			
Unemployment (%)	38.1	5.8	<0.001
Education (% completed grade 12)	58.1	95.2	< 0.001
Education (% completed tertiary education)	19.2	74.3	<0.001
Housing density (persons/room)	1 (0.6–1.4)	0.44 (0.3-0.6)	0.504
Women who consume alcohol (%)	32.1	74.1	< 0.001
Smokers (%)	7.9	17.1	0.003
Physical activity			
Total activity (MET min/day)	206 (74-480)	206 (57-411)	0.298
Total vigorous activity (MET min/day)	0 (00)	103 (0-206)	< 0.001
Total moderate activity (MET min/day)	171 (51-480)	51 (0-206)	< 0.001
Travel activity (MET min/day)	120 (26-240)	0.9±0.1	< 0.001
Women who walk for travel (%)	78.5	24.0	< 0.001
Work activity (MET min/day)	0 (0-0)	0 (0-0)	0.836
Leisure activity (MET min/day)	0 (0-62)	154 (51-274)	< 0.001

	β	В	SEE	P value
Black women				
Femoral neck				
FFSTM (kg)	0.633	0.013	0.001	0.000
Injectable contraceptive use	-0.229	-0.066	0.017	0.000
Tertiary education	0.102	0.033	0.018	0.075
	R=0.645	$R^2 = 0.416$	Adj R ² =0.406	
Total hip				
FFSTM (kg)	0.567	0.012	0.001	0.000
Injectable contraceptive use	-0.178	-0.052	0.018	0.004
Tertiary education	0.105	0.035	0.020	0.086
	P=0.575	P ² =0 331	Adj P ² =0.320	
Lumbar spine				
FFSTM (kg)	0.369	0.007	0.001	0.000
Injectable contraceptive use	-0.182	-0.049	0.017	0.007
Tertiary education	0.192	0.058	0.020	0.004
Walk for travel	-0.141	-0.040	0.018	0.031
	R=0.471	$R^2 = 0.222$	Adj R ² =0.205	
White women				
Femoral neck				
FFSTM (kg)	0.429	0.007	0.001	0.000
Leisure activity (log MET min/day)	0.211	0.066	0.023	0.004
l -	R=0.493	$R^2 = 0.243$	Adj R ² =0.232	
Total hip				
FFSTM (kg)	0.482	0.009	0.001	0.000
Leisure activity (log MET min/day)	0.227	0.076	0.023	0.001
1	R=0.55	$R^2 = 0.303$	Adj R ² =0.293	
Lumbar spine				
Fat mass (kg)	0.156	0.001	0.001	0.060
Leisure activity (log MET min/day)	0.242	0.070	0.024	0.004
Oral contraceptive use	-0.176	-0.041	0.019	0.033
l i i i i i i i i i i i i i i i i i i i	R=0.335	$R^2 = 0.112$	Adj R ² =0.093	

Multiple regression analyses for BMD in black and white premenopausal South African women

- FN and TH BMD were higher, but LS BMD was lower in black than white South African women
- Body composition, lifestyle and SES factors contributing differently to BMD in these women.

Chantler et al., Osteo Int. 2012

Conclusions

Understanding PA's impact on bone mass is central to developing primary prevention strategies for osteoporosis but needs to consider:

- Differences in physical activity patterns;
- Site-specific loading;
- Contribution of factors in different ethnic groups

