HIV, bone and body composition

Findings from studies in Soweto (Johannesburg) and Cape Town

Lisa Micklesfield, PhD

MRC Developmental Pathways for Health Research Unit University of the Witwatersrand, Johannesburg, South Africa

Sub-Saharan African MuSculOskeletal Network (SAMSON)

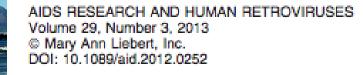
Musculoskeletal Research Training Workshop, Harare, Zimbabwe

Introduction

- Anti-retroviral therapy (ART) has **increased life expectancy** of HIVinfected individuals;
- Increased risk of chronic NCDs
- **Body composition**: metabolic complications include changes in body fat distribution (**lipodystrophy**).
- **Bone**: the prevalence of low **BMD** and risk of associated **fractures** are higher in HIV-infected patients compared to the general population.

Two SA studies

BODY COMPOSITION


What is **lipodystrophy**?

Increased abdominal VAT, dorsocervical fat pad (buffalo hump) and/or breast enlargement

Includes <u>lipoatrophy</u> and <u>lipohypertrophy</u>;

Subcutaneous fat wasting of the face, extremities, and/or buttocks

- Occur with differing frequency and severity in patients using ART;
- Can occur separately or overlap in the same patient;
- Prevalence differs according to definition and examination;
- ? relevance of findings from studies done in HICs.
- Few studies from Africa have distinguished between lipoatrophy and lipohypertrophy;
- ART dependent

Effect of Different Antiretroviral Drug Regimens on Body Fat Distribution of HIV-Infected South African Women

Julia H. Goedecke^{1,2} Lisa K. Micklesfield^{1,3} Naomi S. Levitt⁴ Estelle V. Lambert¹ Sacha West¹ Gary Maartens⁵ and Joel A. Dave⁴

> AIDS PATIENT CARE and STDs Volume 30, Number 10, 2016 Mary Ann Liebert, Inc. DOI: 10.1089/apc.2016.0183

First longitudinal study in SSA to document changes in body composition using DXA in patients starting ART

Changes in Body Fat Distribution on Dual-Energy X-Ray Absorptiometry in Black South Africans Starting First-Line Antiretroviral Therapy

First African study to use DXA, and report on body fat composition in patients on second-line (PI based) ART

Zulfa Abrahams,¹ MPH, Naomi Levitt, PhD,¹ Maia Lesosky, PhD,² Gary Maartens, PhD,³ and Joel Dave, PhD¹

AIM: To compare body composition, using DXA and anthropometry, in HIV infected black South African women received SA DOH first line ART, SA DOH second-line ART, and ART-naïve.

BODY FAT AND ART IN SOUTH AFRICAN WOMEN

TABLE 1. PARTICIPANT CHARACTERISTICS OF ART-NAIVE, ART1, AND ART2 WOMEN

	ART-naive	ART1	ART2
N	309	344	91
Age (years)	31 (27–38) ^{A,B}	33 (29–40) ^A	35 (30–40) ^B
Housing density (persons/room)	2.0 (1.3–3.0) ^a	1.7 (1.0–3.0) ^{a,c}	2.0 (1.3–3.0) ^c
CD4 start (cells/ μ l)		113 (54–157)	115 (48-154)
CD4 current (cells/ μ l)	271 (185–436) ^{A,B}	336 (225–478) ^{A,C}	505 (315–667) ^{B,C}
Time on d4T (months)	ъ <i>г</i>	13 (8–19) $(n=296)^{\circ}$	14 (10-23) $(n=80)^{\circ}$
Time on AZT (months)		$12(7-20)(n=132)^{C}$ 16(10-25)^{C}	19 (9–29) $(n=78)^{\circ}$
Total time on ART (months)		16 (10–25) ^C	33 (26–47) ^C
Time on ART2 (months)			18 (10–27) (n=83)

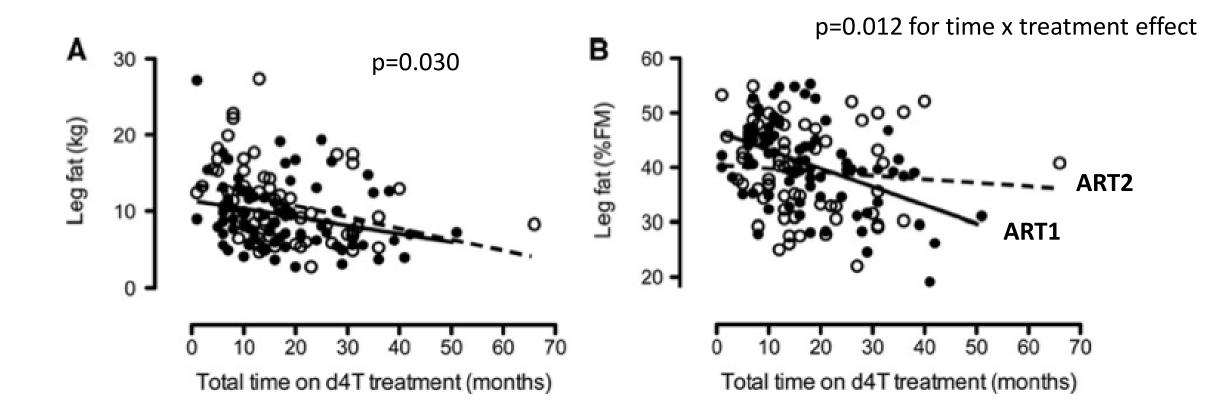
```
d4T=stavudine NRTIs
AZT=zidovudine 3TC=lamivudine
dDI-didanosine
```

ART1=SA DOH first line ART regimen: d4T or AZT, 3TC, efavirenz or nevirapine

ART2=SA DOH second line ART regimen: lopinavir/ritonavir, AZT, didanosine

Goedecke et al., 2013

DXA of ART-Naïve, ART1 and ART2 women

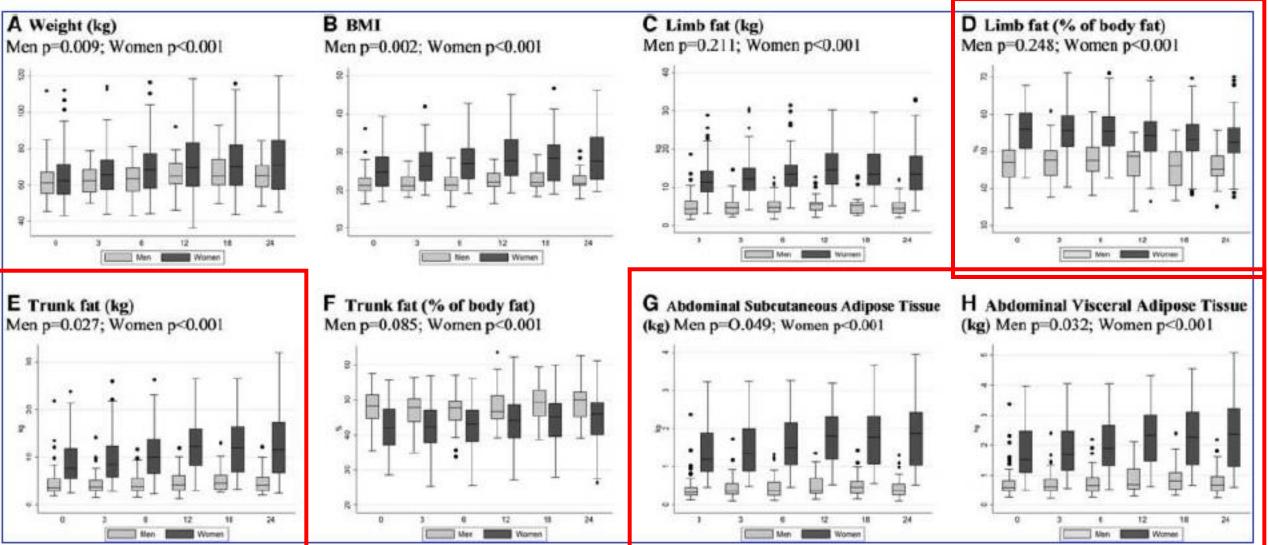

	Unadjusted values		
	ART-naive	ART1	ART2
N	143	103	70
Fat mass (kg)	22.4 (15.9-33.0)	23.9 (17.6-30.4)	24.3 (19.0-35.9)
Fat mass (%)	37.1 (30.6-43.3)	36.3 (30.6-41.5)	36.8 (32.1-43.2)
Trunk fat (kg)	9.2 (6.0–14.2) ^b	10.7 (6.8–15.0)	11.5 (8.4–17.6) ^b
Trunk fat (%FM)	41.1 (36.3–45.2) ^{A,B}	44.2 (39.4–50.1) ^A	46.9 (39.3–52.8) ^B
Limb fat (kg)	12.7 (8.5–17.7)	11.9 (8.7–15.7)	12.5 (9.1–18.4)
Limb fat (%FM)	55.0 (51.7–58.8) ^{A,B}	52.4 (46.8–56.3) ^A	50.0 (44.6–57.5) ^B
Arm fat (%FM)	11.1 (9.8–12.5)	10.8 (9.9–12.4)	10.7 (9.9–11.9)
Leg fat (%FM)	43.9 (39.3–48.1) ^{A,B}	41.2 (34.8–45.8) ^A	40.2 (32.9-45.7) ^B
Trunk/limb fat	0.75 (0.62–0.87) ^{A,B}	0.85 (0.69–1.06) ^A	0.93 (0.68-1.18) ^B
Trunk/leg fat	0.94 (0.77–1.14) ^{A,B}	1.07 (0.85–1.43) ^A	$1.16(0.85-1.56)^{B}$
FFSTM (kg)	37.7 (34.0-42.8) ^b	39.0 (34.9–45.4)	40.0 (35.8-46.8) ^b

Confirmed by anthropometry measures

Despite a similar BMI, those on ART weighed more and had a greater central and lower peripheral distribution of fat compared to ART-naïve women

Goedecke et al., 2013

Associations between total time on stavudine (d4T) and leg fat mass in women on ART1 and ART2


The effects of ART on peripheral body fat distribution were largely mediated by the effects of the first-line ART treatment.

Goedecke et al., 2013

AIM: To use DXA scans to describe the changes in fat distribution over a 24-month

period in a population of black SA men and women initiated on ART

Abrahams et al., 2016

Osteoporos Int DOI 10.1007/s00198-013-2373-y

ORIGINAL ARTICLE

Bone mass, body composition and vitamin D status of ARV-naïve, urban, black South African women with HIV infection, stratified by CD₄ count

M. M. Hamill · K. A. Ward · J. M. Pettifor · S. A. Norris · A. Prentice

ORIGINAL ARTICLE

Changes in Bone Mineral Density, Body Composition, Vitamin D Status, and Mineral Metabolism in Urban HIV-Positive South African Women Over 12 Months

Matthew M Hamill,^{1,2} John M Pettifor,² Kate A Ward,¹ Shane A Norris,² and Ann Prentice^{1,2}

AIM: To describe BMD, **body composition** and vitamin D status in SA women with

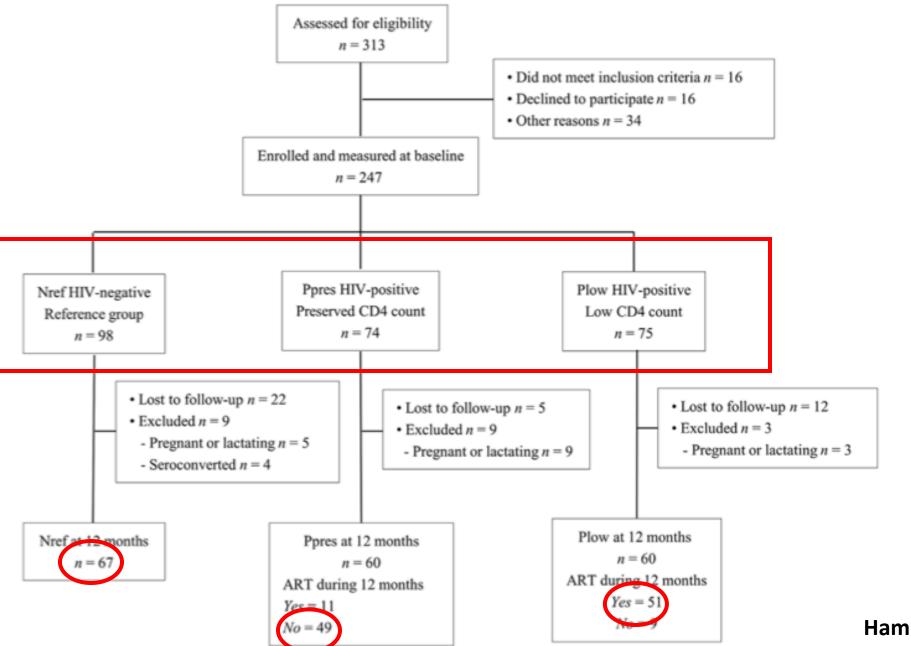

and without HIV infection

Table 1 Subject characteristics, anthropometric measurements and vitamin D status as measured by serum 25(OH)D

	Group 1 HIV-negative n=98	Group 2 HIV-positive, non-ARV n=74	Group 3 HIV-positive, pre-ARV n=75	Group effec ANOVA p
Age (years) HIV status	30.0 (8.1) Negative	33.5 (6.1) ^a Positive	33.4 (6.5) ^a Positive	0.001
Current CD ₄ count ×10 ⁶ cells/l Median (IQR)	ND	412 (91) 420 (127;409)	161 (69) ^b 175 (120;165)	<0.001
Min	NA	240	18	
Max	NA	604	275	
Gravidity median (IQR)	1 (0;2)	2 (2;3) ⁿ	2 (1;3) ⁿ	
Range	0-5	0-6	0-6	
Current hormonal contraceptive use (%)	34 (35.4)	26 (36.6)	25 (33.3)	0.9
urrent smoking (%)	10.2	13.5	8	0.2
eight (cm)	157.6 (5.9)	159.4 (5.9)	159.2 (5.3)	0.06
eight (kg)	69.7 (17.0)	72.0 (17.4)	62.3 (15.2) ^{c,d}	< 0.001
MI (kg/m ²) Median (IQR) Overweight BMI >24.9 kg/m ² , <30 kg/m ² (%)	27.3 (23.1;31.7) 35	27.8 (23.3;32.3) 28	23.5 (20.5;27.0) ^{d,e} 28	<0.001
Obese BMI >30 kg/m ² (%)	30	37	16	
Underweight BMI <18.5 kg/m ² (%)	4	1	11	
/BLH Fat (kg)	26.1 (11.5)	26.1 (9.8)	19.7 (9.3) ^{b,e}	<0.0001
/BLH Lean (kg) at/lean ² (kg/kg ²)*	38.3 (60.8) 17.32 (4.80)	39.5 (62.4) 15.92 (4.56)	36.4 (48.1) ^d 14.58 (5.47) ^{a,f}	0.005 0.002

AIM: Follow up women for 12 months...

Hamill et al., 2017

Body composition results...

- Nref and Plow gained significant amounts of weight and body fat over the 12 months
- However Plow still lighter with less fat mass than Nref

BODY MINERAL DENSITY

Osteoporos Int DOI 10.1007/s00198-013-2373-y

ORIGINAL ARTICLE

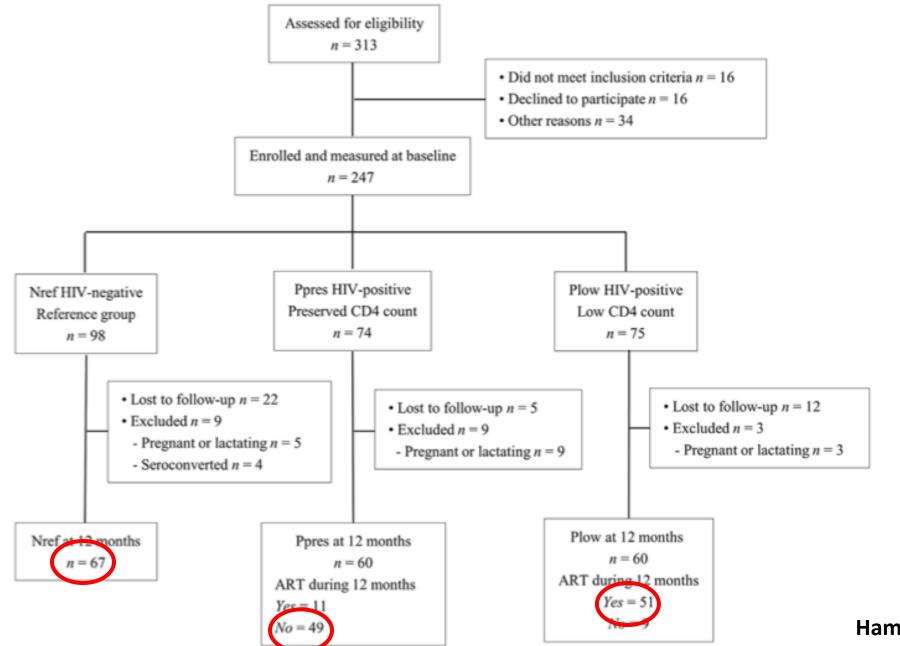
Bone mass, body composition and vitamin D status of ARV-naïve, urban, black South African women with HIV infection, stratified by CD₄ count

M. M. Hamill · K. A. Ward · J. M. Pettifor · S. A. Norris · A. Prentice

ORIGINAL ARTICLE

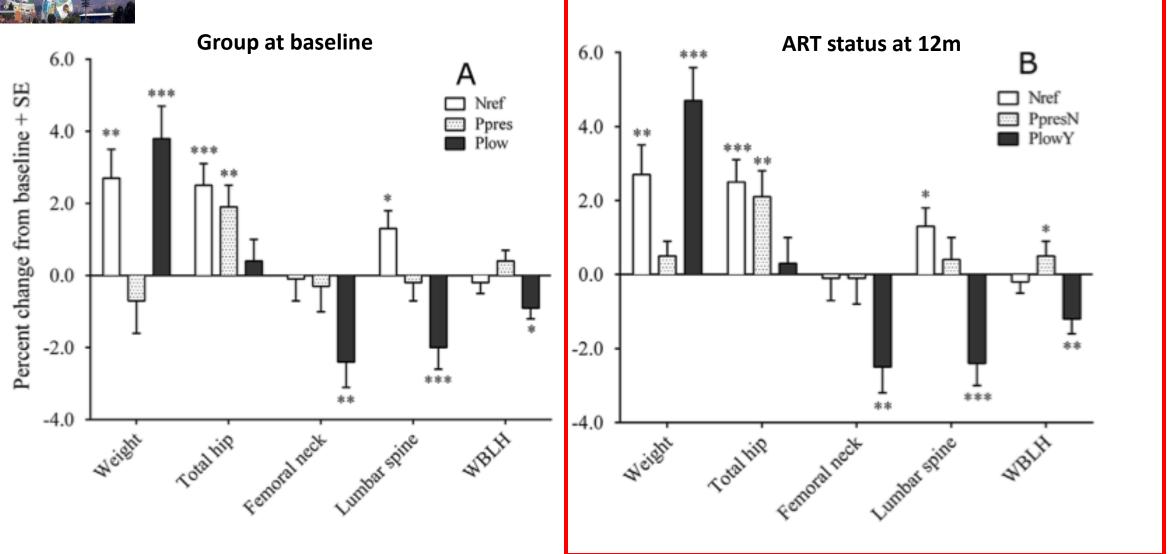
Changes in Bone Mineral Density, Body Composition, Vitamin D Status, and Mineral Metabolism in Urban HIV-Positive South African Women Over 12 Months

Matthew M Hamill,^{1,2} John M Pettifor,² Kate A Ward,¹ Shane A Norris,² and Ann Prentice^{1,2}


AIM: To describe **BMD**, body composition and vitamin D status in SA women with and without HIV infection

	BMD (g/cm ²) Mean (SD)			Group effect p
	Group 1 HIV-negative n=98	Group 2 HIV-positive, non-ARV n=74	Group 3 HIV-positive, pre-ARV n=75	
Total Hip	1.013 (0.131)	0.985 (0.124)	0.988 (0.125)	0.3
Femoral Neck	0.930 (0.114)	0.916 (0.125)	0.923 (0.131)	0.8
Lumbar Spine	1.018 (0.118)	1.021 (0.109)	1.006 (0.128)	0.7
WBLH	0.958 (0.079)	0.943 (0.071)	0.947 (0.080)	0.4

No significant differences in BMD at the TH, FN, LS and WBLH were found, and age and size adjustment did not reveal any differences between groups.



AIM: Follow up women for 12 months...

Hamill et al., 2017

PLOS ONE

n=444 Median age = 35 years ART vs. ART naive

Antiretroviral Therapy, Especially Efavirenz, Is Associated with Low Bone Mineral Density in HIV-Infected South Africans

Joel A. Dave¹*, Karen Cohen², Lisa K. Micklesfield^{3,4}, Gary Maartens², Naomi S. Levitt¹

BMD results...

		-	•				
	All participants	Men	Women	p value	On ART	Not on ART	p value
Lumbar spine	0.930 (0.120)	0.943 (0.123)	0.928 (0.119)	0.408	0.925 (0.125)	0.937 (0.112)	0.287
Femoral neck	0.817 (0.128)	0.820 (0.136)	0.816 (0.125)	0.798	0.795 (0.130)	0.844 (0.120)	< 0.0001
Total hip	0.930 (0.125	0.973 (0.128)	0.917 (0.121)	0.0001	0.908 (0.122)	0.956 (0.124)	< 0.0001

TH and FN BMD were significantly lower in ART vs ART-naïve participants;

Z-score<-2: 17% LS; 5% TH

Multivariate regressions – total hip BMD

	III				
Univariate analysis			Multivariate analysis		
Variable	Beta coefficient (95% CI)	p-value	Beta coefficient (95% CI)	p-value	
Age (years)**	-0.002 (-0.016 to 0.013)	0.833	-0.007(-0.021 to 0.005)	0.249	
Weight (kg)**	0.028 (0.022 to 0.035)	<0.001	0.033 (0.027 to 0.039)	<0.0001	
Male	0.057 (0.029 to 0.085)	<0.001	0.081 (0.055 to 0.106)	<0.0001	
Vit D (nmol/L)*	0.008 (0.000 to 0.016)	0.058	0.008 (0.000 to 0.015)	0.037	
ART exposure					
ART naive	referent		referent		
efavirenz-based ART	-0.071 (-0.105, -0.037)	<0.0001	-0.075(-0.105 to -0.044)	<0.0001	
nevirapine-based ART	-0.025 (-0.059, 0.008)	0.141	-0.021(-0.050 to 0.008)	0.158	
lopinavir-based ART	-0.057 (-0.089, -0.024)	0.001	-0.067(-0.095 to -0.038)	<0.0001	
Model adjusted P ² – 0.29					

Model adjusted R² = 0.28.

*univariate and multivariate analyses calculated on 412 participants with complete data for all variables.

** increments of 10.

Exposure to efavirenz or lopinavir-based ART was associated with lower total hip BMD.

Multivariate regressions – lumbar spine BMD

	n	10	-		
Univariate analysis			Multivariate analysis		
Variable	Beta coefficient (95% CI)	p-value	Beta coefficient (95% Cl) p-value		
Age (years)**	-0.018 (-0.031 to -0.005)	0.005	-0.023 (-0.036 to -0.010) <0.001		
Weight (kg)**	0.021 (0.014 to 0.027)	< 0.001	0.023 (0.017 to 0.029) <0.001		
Male	0.013 (-0.014 to 0.040)	0.339	0.039 (0.013 to 0.065) 0.003		
ART exposure					
ART naive	referent		referent		
efavirenz-based ART	-0.035 (-0.067 to -0.003)	0.034	-0.032 (-0.062 to -0.001) 0.040		
nevirapine-based ART	0.006 (-0.026 to 0.038)	0.722	0.007 (-0.023 to 0.037) 0.655		
lopinavir-based ART	-0.017 (-0.048 to 0.014)	0.283	-0.021 (-0.050 to 0.009) 0.169		

Model adjusted R² = 0.13

*univariate and multivariate analyses calculated on 423 participants with complete data for all variables. 19 participants were missing data for 1 or more variables included in the multivariate model.

**increments of 10.

Exposure to efavirenz-based ART was associated with lower total LS BMD.

Conclusions

- ART is associated with increased central fat and reduced peripheral fat;
- Different ART regimens have different effects on body fat distribution;
- Conflicting results on BMD differences between HIV and ARV groups;
- Longitudinal data ART exposure results in significant bone loss, particularly at the LS
- Future work
 - Need to understand what effect changes in body fat distribution has on cardiovascular risk;
 - Establish if bone loss continues with ongoing ART and if this results in increased fracture rates.

