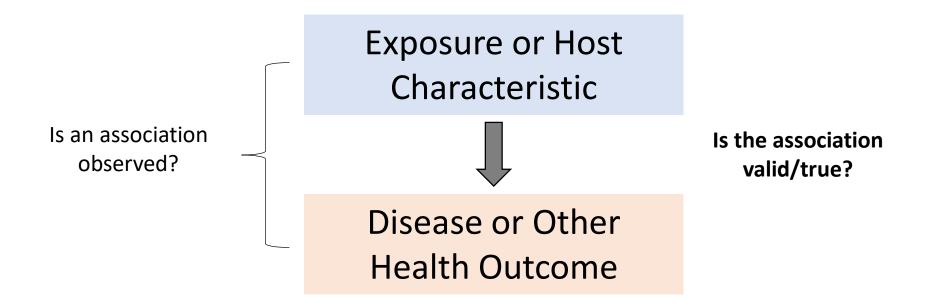
A brief overview of bias

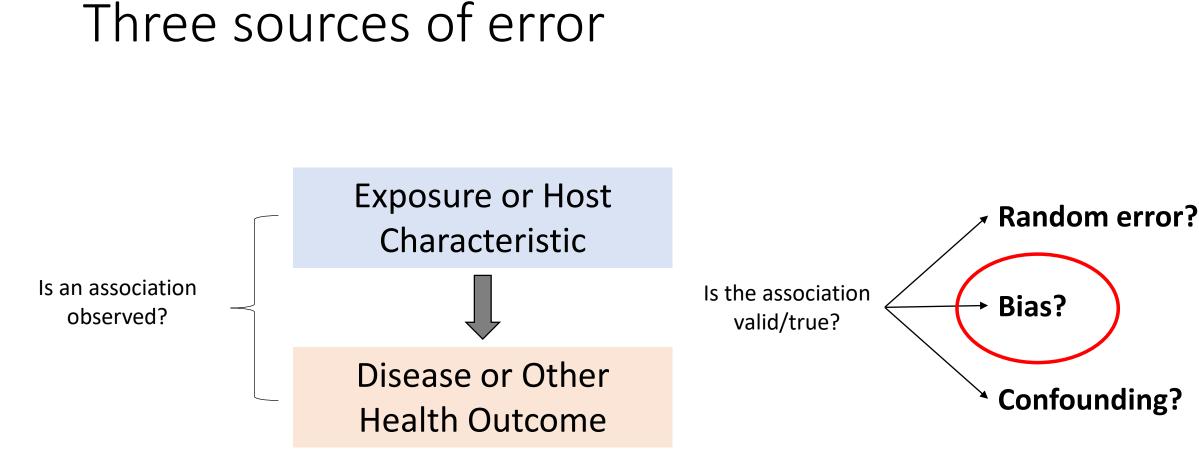
Dr James Church

Wellcome Trust Clinical PhD Fellow

Zvitambo Institute for Maternal & Child Health Research

Bias in the everyday





Epidemiological inference

What is scientific bias?

- Bias is any trend or **deviation from the truth** in data collection, data analysis, interpretation and publication which can give rise to false conclusions.
- It does not imply prejudice or deliberate deviation, but the deviation is **systematic** and non-random.

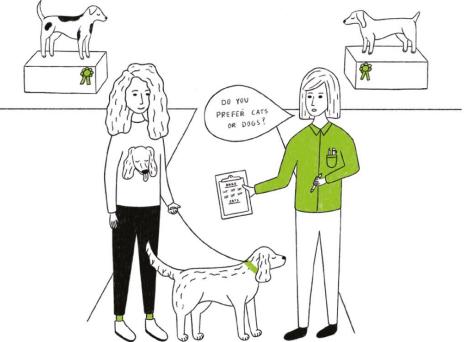
Bias is bad news!

- Error in the design or conduct of a study
- Not much can be done about it once the study is over!
- Studies have practical and ethical constraints so some bias is almost inevitable.

"It's too late, Roger-they've seen us."

Bias in three parts

Concerns the people included or compared


... such that selection of individuals or groups does not achieve randomisation

- a. Sampling bias
- b. Ascertainment bias
- c. Attrition bias (loss to follow-up)

Who is selected and how are they selected?

- Sampling bias
- When some members of the intended population are less likely to be included than others
- Results in a non-random sample

- Sampling bias pneumonia and alcoholism
- In the community $OR = D_e / H_e / H_n$ $OR = D_n / H_n$ Alcoholism Ves = 10

$$OR = \frac{10}{10} = \frac{10 \times 90}{90 \times 10} = \frac{1.0}{90 \times 10}$$

Pneumonia

90

100

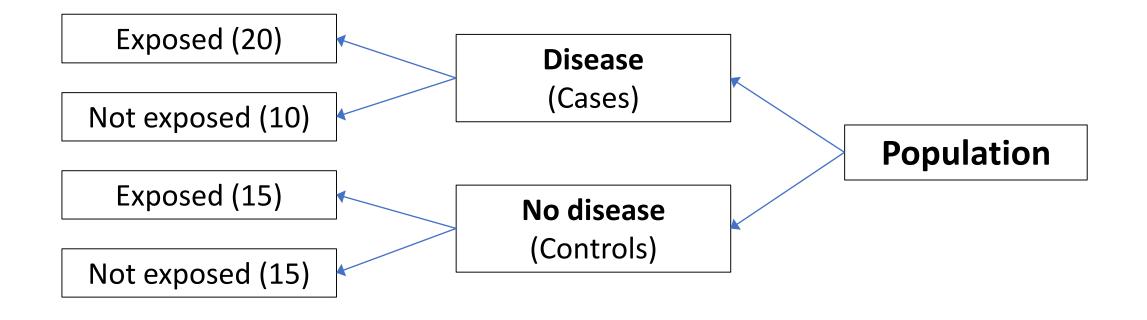
No

No

10

90

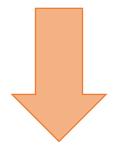
100


• In the hospital

• Sampling bias – pneumonia and alcoholism

Pneumonia

$OR = D_e / H_e$		Yes	Νο	
D_n / H_n	Yes	20	10	
Alcoholism OR = $20 / 10 = 20 \times 90 = 2.25$	Νο	80	90	
80/90 80 x 10		100	100	


Sampling bias in case-control studies

Time

Sampling bias in case-control studies

Exposures of interest influence the likelihood of an individual becoming a control

Biased assessment of exposure odds in the population from which the cases are drawn

Sampling bias in case-control studies

Examples:

- Case-control study of cancer of the oesophagus and alcohol
- Controls: Men employed in a brewery
- Case-control study of stroke and oral contraceptives
- Controls: Women who attended a family planning clinic

The major problem in case-control studies is the choice of CONTROLS

How to select **controls** in case-control studies

- Do they reflect <u>all</u> people without the disease?
- Typical sources for control population
 - Hospital based?
 - Population based?
 - Defined subset of population?
- Trade off between convenience and introducing error
- Key to identify potential sources of error

How to select cases in case-control studies

- Is the population generalisable to all patients with the disease?
- Is the severity of disease among these patients representative?
- Do cases at different levels of selection have different exposure profiles??
- E.g. epidemiology of hip fracture in Harare

Ascertainment bias

- When exposed cases are more (or less) likely to be selected for the study than unexposed cases
- E.g. studies of uterine cancer in the early 1970's
 - They found a strong association with exogenous oestrogens (HRT)
 - Exogenous oestrogens cause uterine bleeding regardless of whether they cause endometrial cancer
 - Uterine bleeding result in women undergoing gynae investigations and may reveal endometrial cancers that would otherwise have gone undetected

- Attrition bias
- Systematic difference in withdrawals and exclusions between groups
- Loss to follow up can occur if
 - Treatment has been successful
 - Control group unhappy with lack of progress

2) Information bias

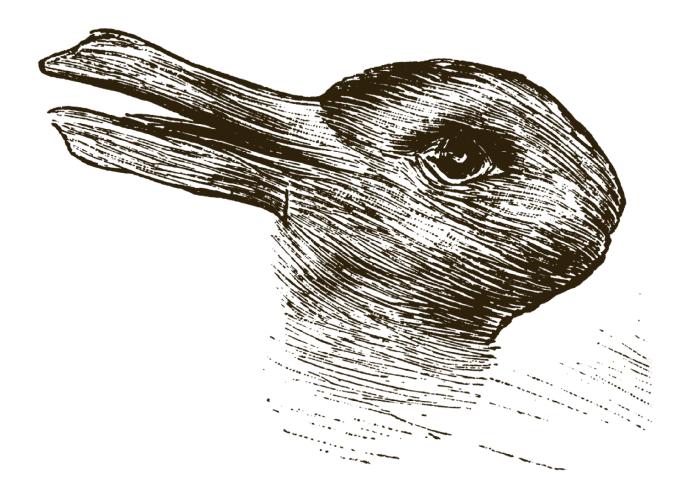
Concerns the measurements made

- a. Misclassification
- b. Recall bias
- c. Observer bias
- d. Performance bias

2) Information bias

Misclassification

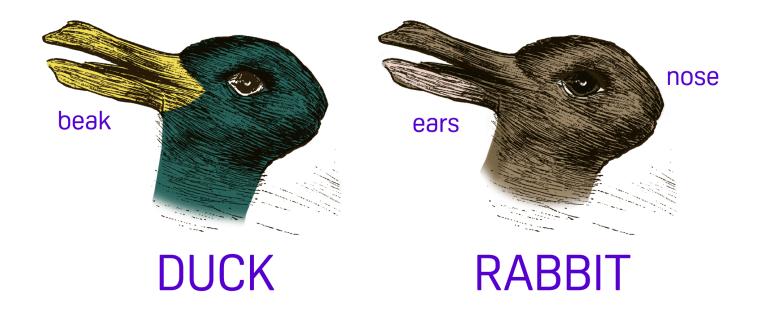
- Can occur with anything you measure
- Applies to exposure and/or disease outcome
 - Know the exposed group so look harder for the disease in this population
 - Know who is a case so probe for more information on exposure
- Non-differential (random)
 - Equal misclassification
 - Bias measure of effect towards null
- Differential (non-random)
 - Non equal misclassification of exposure/outcome
 - Bias measure of effect either way



Information bias

• Recall bias

- When probability of recall is affected by disease status
- Main form of bias in case-control
- "Why did it happen to me?"



Information bias

• Observer bias

- Tendency of humans to see what we expect/want to see
- Can be conscious or unconscious

Information bias

• Performance bias

- Occurs when behaviour change varies depending on group allocation
- Can apply to participants or caregivers

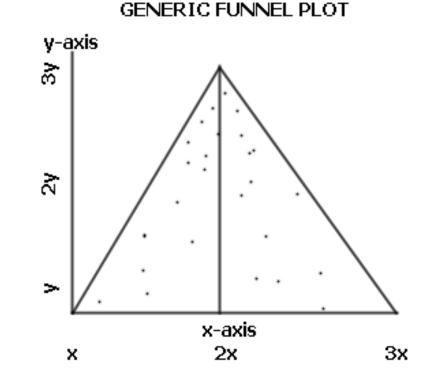
Concerns reporting & dissemination of results

- a. Outcome reporting bias
- b. Spin or selective focus
- c. Publication bias
- d. Citation bias

Outcome reporting bias

- Statistically significant outcomes preferred
- Subsets of data presented
- Omission of outcomes
- Data underreported

Publication bias


- Mistaken emphasis on "significant" results i.e. P value < 0.05
- Leads to overestimation of a treatment effectiveness
- Small studies may not detect a beneficial effect

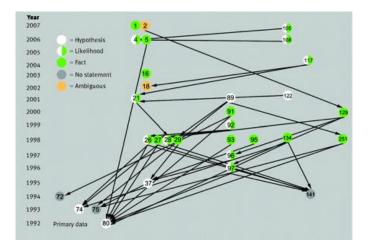
"File drawer effect"

Assessing publication bias

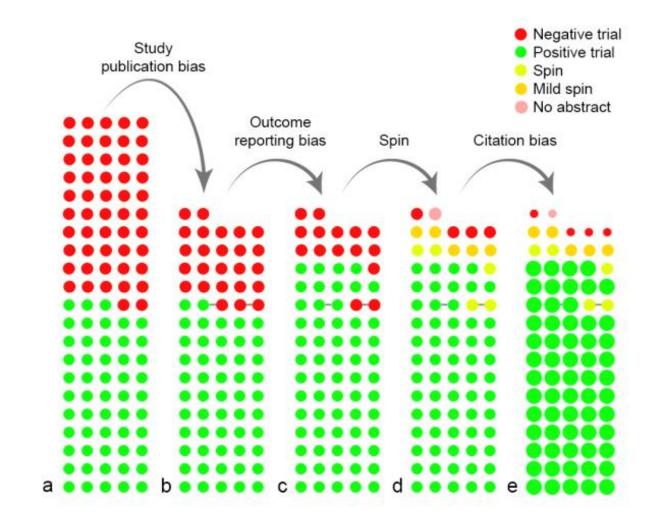
- Funnel plots = scatter plot of treatment effect (x-axis) versus standard error of treatment effect (y-axis)
- Funnel asymmetry points to publication bias
- Egger's test to compute statistically

• Spin or selective focus

- More commonly associated with public relations & media
- Can make research seem more convincing than warranted
- Examples include
 - Detracting from non-significant results
 - Inappropriate use of causal language
 - Abstract article mismatch

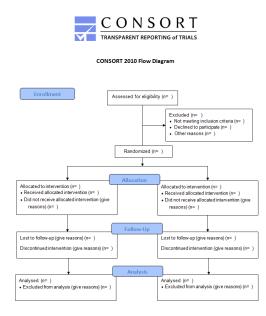


The most useful course I've ever done was the "Creative Writing" course I did as a kid: It's been involuable in writing Grant Applications...


Citation bias

"The conversion of hypothesis to fact through citation alone"

- Stephen Greenberg
- Statistically significant results more often cited
- Studies with non-significant results less visible



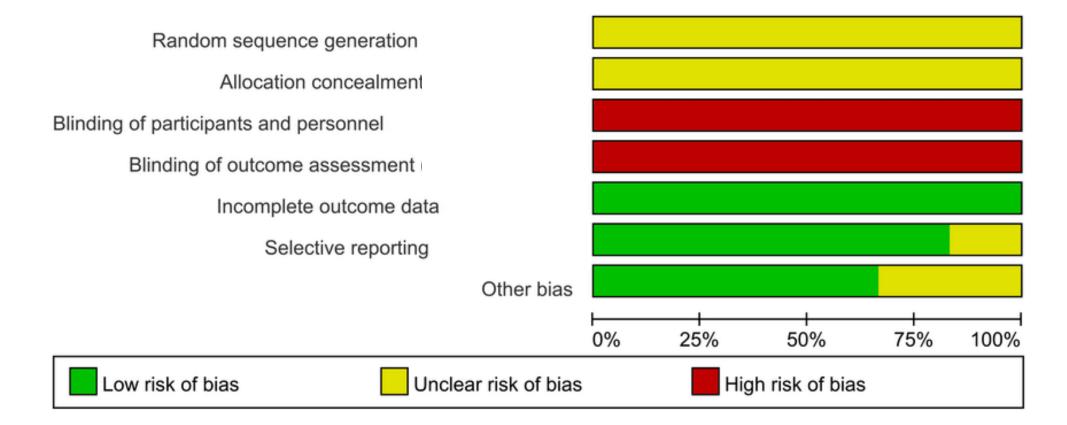
Cumulative effect of biases at the tail end

How can we mitigate bias?

- Crucially minimise bias in the design
 - REMEMBER: it can <u>not</u> be controlled or adjusted for in the analysis
 - It can be quantified but data rarely available to do this

PRISMA 2009 Checklist

Section/topic		Checklist Item	Reported on page a
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	
Objectives	4 Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).		


Examples of mitigating bias in study design

- Blinding of outcome assessors
- Open reporting loss to follow up
- Careful randomisation
- Blinding of participants
- Pre-specified trial outcomes
- Careful choice of control group
- Intention-to-treat analysis

- Observer/detection bias
- Attrition bias
- Sampling bias
- Performance bias
- Reporting bias
- Sampling bias
- Attrition bias

Assessing bias of trials in a systematic review

• Tools to summarise risk of bias (RevMan)

Assessing bias of trials in a systematic review

- Random sequence generation
- Allocation concealment
- Blinding participants/personnel
- Blinding outcome assessment
- Incomplete outcome data
- Selective reporting

- Selection bias
 - Selection bias
- Performance bias
- Observer/detection bias
- Attrition bias
- Reporting bias

Any questions?

Summary

- Research is full of bias
- Bias results in a trend or deviation away from the truth
- Understanding bias and how to detect it allows you to validate and determine quality of scientific research
- Think of bias in three zebra parts
 - 1) Selection bias
 - 2) Information bias
 - 3) Results bias

Thank you for listening!

