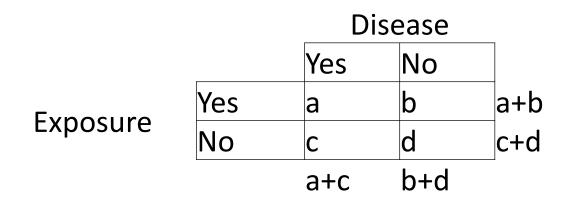


Measures of exposure effect: Lesson from Intro to Epidemiology Short course in Bristol.

Cynthia Mukwasi-Kahari PHD Student

Measures of effect.

- Epidemiological studies investigate associations between disease and exposure
 - Fracture risk in people living with HIV.
 - Cancer risk in people with family history of cancer


- Measures of effect quantify the relationship (association) between an exposure and disease (outcome)
- also known as a measure of association
- For randomised controlled trials we are interested in the treatment effect, but this involves similar calculations

Relative vs Absolute measures of effect

- The measures are expressed as a **ratio** to get the **relative** measure of effect of the exposure on disease
- Alternatively, the **difference** of the two measures of occurrence gives the **absolute** measure of effect of the exposure (risk of outcome in exposed individuals from that of unexposed individuals)

- Relative Risk"
 - risk ratio (RR)
 - odds ratio (OR)
 - incidence rate ratio (IRR) or rate ratio (RR)
 - hazard ratio (HR)

Risk Ratio.

- Risk of disease in exposed = a / a + b
- Risk of disease in unexposed = c / c + d
- Risk Ratio = risk in exposed / risk in unexposed = (a/a+b) / (c/c+d) = a(c+d)/c(a+b)

Risk Ratio

- Is HIV infection associated with low trauma fracture?
- Cross sectional study and 2500 people living with HIV.
- Risk ratio= <u>Risk in the exposed group</u> Risk in the unexposed group
- RR=0.1/0.05 = 2

	Fracture	No Fracture	Total	Risk of fracture
HIV+	250	2250	2500	0.1
HIV-	375	7125	7500	0.05

Interpreting risk ratios

Result Interpretation

1 No effect/association

Positive association/Increased risk of disease amongst those

> 1 exposed/Harmful effect

Negative association/reduced risk of disease amongst those

< 1 exposed/protective effect

Odds Ratio.

		Disease	
		Yes	No
Exposuro	Yes	а	b
Exposure	No	С	d
		a+c	b+d

- Odds of exposure in cases = a/c
- Odds of exposure in controls= b/d
- Odds Ratio = odds in cases/ odds in controls = (a/c) / (b/d) = ad/bc

Where to use odds ratio?

- In case control studies where the size of the population at risk is unknown so you cannot calculate risk.
- Logistic regression estimates odds ratios.

• odds ratio = <u>odds of disease in the exposed group</u> odds of disease in the unexposed group

Disadvantages of using risks.

- Assumes entire cohort followed up for same length of time
 - Risk increases with follow-up
 - Takes no account of when outcome occurred

Incidence Rate Ratio.

- Incidence Rate=Total new cases in a given time period/ Total person-time at risk during that period
- Contributions to total person-time at risk ...
 - Time to development of disease
 - Time until lost to follow-up (outcome unknown)
 - Time to end of study (outcome hasn't occurred)
 Person-time units must be stated, e.g "per 1000 person years"
- Incidence Rate ratio = <u>Incidence rate in the exposed group</u> Incidence rate in the unexposed group

Example....

	Exposed	Unexposed
Number initially at risk	2000	8000
Deaths during the period	15	30
Person-years at risk	3985	15970

Risk ratio= <u>15/2000</u> = 2 30/8000

 $odds \ ratio = \frac{15/(2000-15)}{30/(8000-30)} = 2.0076$

Rate ratio = <u>15/3985</u> = 2.0038 30/15970

Hazards Ratios.

- Similar to incidence rate ratios
- Outcome is time to an event or non-event
- Calculated using Cox proportional hazards model
- Assumes that the rates of disease in the two exposure groups are related by a constant multiple
- Can include other independent variables

Acknowledgements.

 Celia Gregson & UKRI ZIM-UOB Knowledge exchange programme.

Supervisory & Advisory Team.

Andrea Rheman, LSHTM
 Celia Gregson, University of Bristol
 Kate Ward, University of Southampton
 Lisa Micklesfield, University of Witwatersrand
 Linda Stranix-Chibanda, University of Zimbabwe

